Predictive Maintenance is the practice of forecasting when equipment or assets are likely to fail so maintenance can be performed just in time—neither too early nor too late. In manufacturing and industrial environments, this means continuously monitoring machine health, detecting patterns of degradation, and estimating remaining useful life to avoid unplanned downtime, scrap, overtime labor, and safety incidents. It replaces reactive (run-to-failure) and fixed-interval, calendar-based maintenance with condition-based and predictive strategies.
AI and data analytics enable this shift by ingesting sensor and operational data (vibration, temperature, current, cycle counts, quality metrics, etc.), learning normal vs. abnormal behavior, and predicting failures and optimal intervention windows. More advanced implementations add prescriptive capabilities, recommending specific actions, timing, and even cost/impact trade-offs. Across CNC machines, semiconductor tools, electronics manufacturing lines, building automation systems, and broader industrial assets, Predictive Maintenance improves asset reliability, extends equipment life, and stabilizes production performance.
17 use casesExplore→