AI that identifies at-risk students before they fail or drop out. These systems analyze academic and behavioral data to forecast struggles, explain root causes, and recommend interventions—adapting to each learner. The result: higher retention, closed achievement gaps, and personalized support at scale.
This AI solution uses AI to automatically grade short answers, reports, and comparative-judgment assessments, while supporting human-in-the-loop review for accuracy and fairness. It reduces teacher grading time, scales consistent assessment across large cohorts, and provides faster, more actionable feedback to students—while guiding educators on handling AI-generated work.
This AI AI solution uses machine learning and behavioral data to predict students’ academic performance and identify those at risk of falling behind. By providing early, data-driven alerts and insights, it enables educators and institutions to target interventions, improve learning outcomes, and boost overall program completion rates.
This AI solution uses AI to automatically grade student work, perform comparative judgment, and predict learner performance across digital and traditional assessments. By delivering faster, more consistent evaluation and early risk signals, it reduces instructor workload, scales personalized support, and improves the accuracy and timeliness of educational decisions.
This AI solution uses AI to personalize online course pathways, dynamically adjust content difficulty, and provide real-time feedback within learning management systems. By tailoring instruction at scale and surfacing forward-looking insights on skills and market trends, it boosts learner outcomes, program completion rates, and the ROI of online education offerings.
This application area focuses on using advanced computational models to design, screen, and optimize therapeutic molecules before they enter costly laboratory and clinical testing. It spans small molecules, peptides, and proteins, with models predicting binding affinity, structure, stability, and pharmacological properties in silico. By accurately forecasting how candidate drugs will interact with biological targets and the human body, organizations can prioritize the most promising compounds early in the pipeline. This matters because traditional drug discovery is slow, expensive, and has a high failure rate, with many candidates failing late in development. Computational drug discovery compresses iteration cycles, reduces the number of physical experiments needed, and opens up new classes of drugs—particularly complex biologics and peptide therapeutics—that are hard to explore experimentally at scale. The result is faster time‑to‑candidate, lower R&D spend per approved drug, and expanded innovation capacity for pharma and biotech organizations.
This application area focuses on predicting and quantifying patient outcomes for specific treatments in clinical and real‑world healthcare settings, particularly in drug development and oncology. It integrates statistical methods with flexible modeling to estimate treatment efficacy, survival probabilities, and causal effects on time‑to‑event outcomes such as progression, relapse, or death. The goal is to move beyond population‑level averages toward individualized or subgroup‑level insights while remaining aligned with regulatory standards and statistical rigor. By leveraging large, heterogeneous datasets from clinical trials and observational studies, organizations can uncover nuanced relationships between patient characteristics, treatment modalities, and long‑term outcomes. This enables more personalized treatment decisions, better trial design, and more reliable evidence of comparative effectiveness and safety. The combination of causal inference frameworks with modern predictive models helps handle high‑dimensional covariates, non‑linearities, and time‑varying treatments, improving both the robustness and practical utility of treatment outcome predictions.
Intelligent tutoring and adaptive learning. 7 solutions across 156 use cases.