Company / CompetitorBigTechEnriched

YouTube

YouTube is a global online video platform where users and creators upload, watch, and monetize video content. It is a subsidiary of Google (Alphabet) and operates a large-scale advertising and subscription business while providing creator tools, content distribution, and recommendation-driven discovery.

📍 San Bruno, California, United StatesFounded 2005MixedWebsite →

Primary Focus

Online video platformCreator economyAdvertisingStreaming subscriptionsContent distribution

Company Info

Public

Social

Use Cases Mentioning YouTube

mediaRecSys

AI-Driven Social Media Content Moderation and Personalization

This is like hiring millions of super-fast digital editors who watch everything posted on a social network in real time—hiding abusive or illegal content, flagging rule‑breaking posts, and deciding what to show in people’s feeds based on their interests.

entertainmentRecSys

Streaming Content Recommendation System (e.g., Netflix-style Recommender)

Imagine every time you open your TV, there’s a smart concierge who has watched everything you’ve ever seen, remembers what you liked, what you quit after 5 minutes, what you binged in a weekend, and what people like you enjoy. That concierge quietly rearranges the shelves so the things you’re most likely to love are always right in front of you. That’s what a Netflix-style recommender system does—at software scale for millions of viewers.

entertainmentRecSys

Contextual Recommendation Algorithms for Entertainment Platforms

Think of a streaming service that knows not just what shows you like, but also when you watch, what device you use, and whether you usually binge or sample. Contextual recommendation algorithms use this extra situational information to put the right movie, song, or game in front of you at the right moment.

entertainmentRecSys

Personalized Recommender Systems for Entertainment Platforms

This is the kind of AI that decides “Because you watched X, you’ll probably like Y” on Netflix, YouTube, or Spotify. It watches what each user does, compares that to millions of other users, and then builds a constantly updating list of shows, videos, or songs you’re most likely to click next.

entertainmentRecSys

LEMUR: Large scale End-to-end MUltimodal Recommendation

This is like a super-smart “TikTok/Netflix-style” recommender that looks at everything about a piece of content—its text, images, video, and user behavior—and learns end‑to‑end what people are most likely to enjoy, instead of relying on many hand‑tuned sub‑systems.